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Abstract. The resonant scattering length for K-shell absorption and an E2 transition is
calculated for 3d transition ions, on the basis of an atomic model. It is applied to the evaluation
of the intensity of x-rays Bragg reflected from a magnetic salt, e.g. NiO, and the circular
dichroic signal in the attenuation coefficient. The information which can be extracted from
these quantities relates to the orbital properties of the 3d valence shell. An exception is the
s-state ion 3d5, for which the leading-order effect is zero. For the 3d5 ion it is shown that
inclusion of core polarization in the calculation leads to a weak effect which contains the spin
magnetic moment.

1. Introduction

Recently Hill et al (1997) reported the first observation of the elastic diffraction of x-rays
enhanced by the E2 (electric quadrupole) absorption at the K edge of a transition ion, in a
magnetic salt. The experiment was performed on a large crystal of NiO, which is a type II
antiferromagnet at a temperature less than 523 K. With a primary energyE = 8333 eV
(≡1.49 Å), just less than the position in energy of the maximum in the absorption, a twofold
resonant enhancement of the signal at two magnetic Bragg settings was observed. As Hill
et al (1997) point out, their observation opens a rich seam of investigations of 3d magnets.

Using an atomic model of a 3d transition ion, we offer an interpretation of the
E2 (1s→ 3d) resonance-enhanced diffraction amplitude, and the dichroic signal in the
attenuation coefficient. The measured signals are sensitive to the orbital magnetic moment
in the 3d valence shell, since the 1s core state is not split by the spin–orbit interaction. If
need be in the future, polarization of the core state by the exchange field can be accounted
for. At the moment, the relatively low energy resolution applied in diffraction experiments
does not warrant inclusion of this and other small effects.

Sections 2 and 3 summarize a theoretical framework for the scattering length enhanced
by an E2 resonance at the K edge of a 3d transition ion. Thereafter, in sections 4 and 5,
the focus is on contributions to the scattering length observed at magnetic Bragg reflections
from an antiferromagnet, and the dichroic signal in the attenuation coefficient picked out
by circular polarization. Salient points are gathered in section 6, together with a treatment
of the ion 3d5 which is a special case on account of havingL = 0.

∗ The paper is dedicated to the memory of M C M O’Brien.
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2. The resonant scattering length

When the energies of the primary x-ray beam,E = h̄cq, and the absorption edge,1, almost
match the elastic scattering length per unit cell〈f 〉 is, to a good approximation, given by

〈f 〉 = −(eq)2
{
E −1+ i

2
0

}−1∑
d

exp{ik · d−Wd(k)}〈Z(d)〉. (2.1)

Here,k = q − q′ is the scattering vector, the sum ond is over all resonant ions in the
magnetic cell, and exp{−Wd(k)} is the Debye–Waller factor. For 3d transition ions the
total decay width0 ∼ 1 eV. In the following section we offer an account of the amplitude
factor 〈Z(d)〉 suitable for 3d transition ions and an E2 absorption event.

In arriving at (2.1) one has taken into account that the scattering length is to be used in
calculations of the cross-section for Bragg diffraction or the attenuation coefficient. Both
quantities refer to the bulk state of the target sample, so the relevant scattering lengths
are an average over all degenerate variables required to define the equilibrium, or time-
averaged, state of the sample. The average includes an average over the phase factor of each
ion separately. Phase factors arise from the wave functions used to calculate the atomic
matrix elements in the scattering length for the entire samplef ; the wave functions are
essentially defined only to within an arbitrary phase factor, which is different for each ion.
The scattering cross-section is proportional to|f |2 averaged over all degenerate variables.
The part of the cross-section proportional to|〈f 〉|2, where〈f 〉 is the average value of the
scattering length, for crystals can give rise to Bragg scattering where translational symmetry
sets a strict geometric condition on the allowed values ofk. For the case of resonance-
enhanced Bragg scattering it is notable that the average over the phase factors of the ions
means that〈f 〉 is a sum of matrix elements from individual ions only, which is necessary
to obtain the Bragg condition, of course, althoughf includes cross-terms of the matrix
element of the current operator for ions at different positions in the sample.

3. The amplitude factor

For an E2 absorption event, the factor〈Z〉 in (2.1) is expressed as a sum of five terms
labelled by the rank,K, of two spherical tensors. One tensor, denoted byTK , describes the
valence shell which accepts the photo-emitted electron. The condition of a beam of x-rays
is described by its wave vector and polarization vector. These quantities for the primary
and secondary beams are grouped to form a tensorH(K). Full details onH(K) are found
in papers by Lovesey (1996) and Loveseyet al (1998). (For an E1 event the tensor that
corresponds toH(K), being independent of the wave vectors for the primary and secondary
beams, is much simpler, as shown by Lovesey and Balcar (1996).)

Since the scattering length is a scalar object the two tensors, one for the valence shell
and one for the x-ray beams, appear in〈Z〉 in the form of a scalar product. From Lovesey
(1996) one finds, for an E2 absorption event and a valence shell with angular momentum
l = 2,

〈Z(d)〉 = 1

5
8
∑
K

(2K + 1)1/2〈TK〉(xyz) · H(K) (3.1)

whereK = 0, . . . ,4, and the E2 radial integral〈R2〉 appears in (for elastic scatteringq = q ′)

8 = 1

6
{q〈R2〉}2

{
3l(l − 1)

2(2l − 1)

}
= 1

6
{q〈R2〉}2. (3.2)
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The subscripts(x, y, z) on the atomic tensor in (3.1) denote that it is evaluated in the
frame of reference for the experiment, the frame in whichH(K) is evaluated. If the local
principal axes of the ion are defined relative to this frame by Euler anglesα, β andγ (Judd
1975) and〈TK〉 is the value of the tensor with respect to these axes,

〈T Km0
〉(xyz) =

∑
Q

〈T KQ 〉D(K)Qm0
(−γ,−β,−α) (3.3)

whereD(K) is an element of the rotation matrix. For all configurations of the magnetic
moments other than a ferromagnet the Euler angles will depend ond, the position of the
ion in the unit cell. In simple models〈T KQ 〉 is zero for allQ different from zero, i.e. the
atomic tensor is diagonal in the local principal axes. On settingQ = 0 on the right-hand
side of (3.3) one finds

〈T Km0
〉(xyz) = 〈T K0 〉C(K)m0

(β, α) (3.4)

whereC(K)m0
(β, α) is a spherical harmonic normalized to giveC(0)0 (β, α) = 1.

Table 1. Values of the reduced-matrix element of the unit tensor operatorV (K) are given for 3d
transition ions andK = 2, 3 and 4. The configuration of the valence shell is determined from
Hund’s rules, andθ is an abbreviation for the atomic quantum numbersS,L andν. Entries are
adapted for holes from tables prepared by Nielson and Koster (1963).

Ion (θ ||V (2)||θ) (θ ||V (3)||θ) (θ ||V (4)||θ)
3d1, 2D −√5

√
7 −3

3d2, 3F −( 6
5)

1/2 −( 21
5 )

1/2 3( 11
5 )

1/2

3d3, 4F ( 6
5)

1/2 −( 21
5 )

1/2 −3( 11
5 )

1/2

3d4, 5D
√

5
√

7 3
3d6, 5D −√5

√
7 −3

3d7, 4F −( 6
5)

1/2 −( 21
5 )

1/2 3( 11
5 )

1/2

3d8, 3F ( 6
5)

1/2 −( 21
5 )

1/2 −3( 11
5 )

1/2

3d9, 2D
√

5
√

7 3

The notation〈· · ·〉 used in (3.1) denotes an expectation, or mean, value of the enclosed
atomic operator for the ground state of the valence shell. In general, the mean value is
a sum of matrix elements, expressed in terms of Racah unit tensors(θ ||V (K)||θ ′) with θ
shorthand for the quantum numbersS,L and ν. If nh is the number of holes in a shell,
with angular momentuml = 2,

(θ ||V (0)||θ) = nh

{
1

5
(2L+ 1)

}1/2

(3.5)

and

(θ ||V (1)||θ) =
(

1

10

)1/2

(L||L||L) (3.6)

where the reduced-matrix element(L||L||L) = √{L(L+ 1)(2L+ 1)}. Other special cases
are: fornh = 1,

(θ ||V (K)||θ) = (2K + 1)1/2 for all K (3.7)

and forK > 0 andnh = (4l + 1),

(θ ||V (K)||θ) = (−1)1+K(2K + 1)1/2. (3.8)
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The remaining values of(θ ||V (K)||θ) for 3d transition ions are listed in table 1. ForK > 0,
nh = 5 andL = 0 all the matrix elements are zero. (Results for thejj -coupling scheme
applied to the valence shell are given by Lovesey (1996).)

A matrix element ofT Km0
is

〈MsMLθ |T Km0
|M ′sM ′Lθ〉 =

(
1

2K + 1

)1/2

δMs,M ′s (θ ||V (K)||θ)

× (−1)L−ML

(
L K L

−ML m0 M ′L

)
. (3.9)

Here, the 3j -symbol is possibly non-zero form0 = ML −M ′L. SettingK = 1 in (3.9) and
using (3.6) shows that

〈MsMLθ |T 1
m0
|M ′sM ′Lθ〉 =

(
1

30

)1/2

〈MsMLθ |Lm0|M ′sM ′Lθ〉 (3.10)

whereLm0 is a spherical component of the operator for angular momentum. It might be
convenient to coupleS andL and use atomic states|θJM〉. In this instance,

〈θJM|T Km0
|θ ′J ′M ′〉 = (−1)J−M

(
J K J ′

−M m0 M ′

)
(θJ ||T (K)||θ ′J ′) (3.11)

and the reduced-matrix element is

δs,s ′(−1)L
′+J+S+K

{
(2J + 1)(2J ′ + 1)

2K + 1

}1/2{
J ′ L′ S

L J K

}
(θ ||V (K)||θ ′). (3.12)

The expressions (3.9)–(3.12) apply forl = 2, and are the essential building blocks; they
enable one to calculate the mean value〈T Km0

〉 with a ground-state wave function for a 3d
ion of any degree of complexity created by, e.g., covalency, the spin–orbit interaction, the
crystal field, and full multiplet calculations.

4. Odd-order Bragg reflections and circular dichroism

The configuration of the magnetic moments in the ordered state is often such that the unit-
cell amplitude factor contains onlyK = 1 and 3, e.g. a collinear antiferromagnet. More
generally, these two contributions to〈Z〉 appear at odd-order satellite reflections, andK = 0,
2 and 4 appear at even-order satellite reflections. Thus, it is worth revisiting the expression
for the amplitude factor to consider its form when the sum onK is restricted to the odd
values.

One can show that, for an E2 absorption event and a valence shell with orbital angular
momentuml, the terms in the sum onK in the right-hand side of (3.1) withK = 1 and 3
are

〈Z(d)〉 =
(

2

5

)1/2

8
1

l(2l + 1)

{
〈L〉(xyz) · H(1) + 1

(l − 1)(2l − 1)
〈3〉(xyz) · H(3)

}
. (4.1)

In (4.1), 〈L〉 is the mean value of the orbital angular momentum and its appearance was
anticipated in (3.10). The second operator in (4.1),3, is of rank three and has the reduced-
matrix element

(µ||3||µ′) =
(

1

2

)
(µ||

∑
j

{l0(5 l20 − 3l(l + 1)+ 1)}j ||µ′)

= 1

2
(l||l||l){(l − 1)(2l − 1)(l + 2)(2l + 3)}1/2(µ||T (3)||µ′) (4.2)
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in which l0 (≡lz) is the diagonal orbital operator. The reduced-matrix element in the
second equality is calculated from (3.9) or (3.12). Note that〈3〉 does not depend on the
spin operator, so the atomic character of (4.1) is exclusively about the orbital properties of
the valence shell.

The expression (4.1) also determines the circular dichroic signal in the attenuation
coefficient. If the signal is defined as the difference in the amplitude factors for equal and
opposite values of the mean helicity in the x-ray beam,P2, and〈3〉 is diagonal in the local
principal axes one finds(l = 2)

1Z(C) = − 1

50
8P2 cosϕ

{
〈L0〉 −

(
5

3
cos2 ϕ − 1

)
〈30〉

}
(4.3)

whereϕ is the angle enclosed by the principal axis and the direction of the beam. For
a simple antiferromagnet the dichroic signal, being the sum of (4.3) evaluated atϕ and
ϕ + π , is zero. Suitably normalized, equation (4.3) is the analogue for E2 events of
the sum rule for E1 events proposed by Tholeet al (1992). For reference, the standard
normalization factor applied to the dichroic signal is 38nh/50. Evaluated for f13 2F7/2, the
expressions (4.1) and (4.2) reproduce the dichroic signal used by Giorgettiet al (1995) in the
interpretation of their data collected for Yb3+. Should〈3〉 not be diagonal in the principal
axes the complete version of the circular dichroic signal is obtained from the results for
H(3) given by Lovesey (1996) and (4.1).

Table 2. The components ofC(K)(β, α) ·H(K) are shown forK = 1 and 3, see (3.4) and (5.1).
For eachK there are two components labelled by the state of polarization in the secondary
beam, namely,σ ′ andπ ′ (σ - andπ -polarizations are, respectively, perpendicular and parallel to
the plane defined by the primary and secondary beams of x-rays). The primary beam is purely
σ -polarization. In the far left column in round brackets is a factor that is common to the two
components. The beam of x-rays is deflected through an angleθ (=twice the Bragg angle).

σ ′σ π ′σ

K = 1 sinθ cosβ − sin( 3
2θ + α) sinβ

(i/(2
√

10))

K = 3 sinθ(3 cosβ + 5 cos 3β) 3
4 sin( 3

2θ + α)(sinβ + 5 sin 3β)

(−i/(8
√

10)) + 5
4 sin( 1

2θ + 3α)(3 sinβ − sin 3β)

5. Examples

The results in the previous section are illustrated by considering two examples. In both
examples the mean values ofL and3 are diagonal in the local principal axes. Using (3.4),

〈L〉(xyz) · H(1) = 〈L0〉C(1)(β, α) · H(1) (5.1a)

and

〈3〉(xyz) · H(3) = 〈30〉C(3)(β, α) · H(3) (5.1b)

and for the two examples we give values for〈L0〉 and〈30〉. The geometric factors in (5.1)
are listed in table 2. The dichroic signal is obtained using (4.3). In the remaining part of
this section the focus is on the diffracted signal.
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5.1. Ni2+(3F) in NiO

Recent surveys of the electronic structure of transition-metal oxides are found in Corti
et al (1997), Tjernberget al (1997), and references therein. In the paramagnetic phase
of NiO the 3d ion is subjected to a crystal field with cubic symmetry. Below the Néel
temperature a contraction along〈111〉, which increases with decreasing temperature, brings
the symmetry of the environment to rhombohedral. The ground-state orbital wave function
is non-degenerate and purely real:

|02〉 = i√
2
{|2〉 − |−2〉}

where |2〉 ≡ |L = 3,ML = 2〉, etc. To this wave function the spin–orbit interaction adds
contributions from states higher in energy. Keeping to diagonal terms in the interaction and
the first state, of05 symmetry, one finds (Abragam and Bleaney 1970)

|ψ〉 = |S = 1,Ms〉
{
|02〉 + i

4
(g − 2)Ms |05〉

}
(5.2)

whereg = 2.23 is the gyromagnetic factor andg − 2 is proportional to the strength of the
spin–orbit interaction. With (5.2) one finds, of course,

〈L0〉 = 〈ψ |L0|ψ〉 = (g − 2)〈S〉. (5.3a)

At zero temperature,〈S〉 = 0.81. Using entries in table 1,

〈30〉 = 〈ψ |30|ψ〉 = 3

2
〈L0〉. (5.3b)

Anisotropy of the formS · D · S leaves the easy axis aligned with [1, 1,−2].
Consider an antiferromagnetic configuration of the moments with the easy axis perp-

endicular to the plane of scattering, defined by the primary and secondary beams of x-rays.
From table 2 for the geometric factors in (5.1) one learns that, for pureσ -polarization in the
primary beam, andβ = 0 andπ , theπ ′σ -channel is zero. A short calculation reveals the
same result for theσ ′σ -channel, since the contributions to the amplitude factor forK = 1
and 3 are equal in magnitude and opposite in sign; cf. section 5.2. These two results lead
to the conclusion that, when the easy axis is perpendicular to the plane of scattering the
Bragg intensity is zero.

As a second case, let the easy axis lie in the plane of scattering, for whichβ = π/2.
The σ ′σ -channel is still zero, and for theπ ′σ -channel

〈Z(d)〉 = −i

80
8(g − 2)〈S〉 sin(θ + 2α) cos

(
θ

2
− α

)
. (5.4)

Here, α is the angle enclosed by the easy axis and thex-axis (the scattering geometry
is fully described by Lovesey and Collins 1996), andθ is the angle through which the
beam is deflected. The unit-cell amplitude factor is constructed from (5.4) and the spatial
phase factors. It will be useful to confirm by experiments the polarization selection rules
that we have established, and the angular dependence of the intensity in theπ ′σ -channel,
equation (5.4).

5.2. Cu2+(2D) in an octahedral crystal field

The wave function in this example is derived by diagonalizing a Hamiltonian that contains
the spin–orbit interaction, a crystal-field interaction of Oh symmetry and a Zeeman energy
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created by a magnetic field along the [001] axis of the crystal field (Sainctavitet al 1995).
In terms of states|J,M〉, with J = 3

2 and 5
2, the wave function of the ground state is

|ψ〉 = sinφ

∣∣∣∣32, 3

2

〉
+ 1√

6
cosφ

{∣∣∣∣52, 3

2

〉
+
√

5

∣∣∣∣52,−5

2

〉}
. (5.5)

The mixing angleφ is fixed by the ratio of the strengths of the spin–orbit and crystal-field
interactions.

The mean values of〈L〉 and〈3〉 are diagonal. For the diagonal components one finds

〈L0〉 = 1

15
(27 sin2 φ −

√
6 sin 2φ − 22 cos2 φ) (5.6a)

and

〈30〉 = 1

5
(6 sin2 φ − 3

√
6 sin 2φ − 16 cos2 φ). (5.6b)

If the spin–orbit interaction is set to zero, sinφ = −(2/5)1/2. For this value of the mixing
angle,〈L0〉 = 〈30〉 = 0, results which reflect the fact that the03 orbital is non-magnetic
(Abragam and Bleaney 1970). In the opposite extreme of an infinite spin–orbit interaction,
φ = 0 and

〈L0〉 = 11

24
〈30〉 = −22

15
.

Let us consider an antiferromagnetic configuration of the moments and the easy axis
perpendicular to the plane of scattering. In contrast to the first of our two examples the
diffracted signal in theσ ′σ -channel can be different from zero. One finds (β = 0 andπ )

〈Z(d)〉 = i

300
8 sinθ cosβ(3 sin2 φ +

√
6 sin 2φ + 2 cos2 φ). (5.7)

The amplitude factor increases with increasing order of the Bragg reflection. For arbitrary
α andβ the amplitude factor is constructed from the entries in table 2 and (5.6).

In an expansion of (5.7) in powers of the ratio of the strengths of the spin–orbit and
crystal-field interactions the leading term is quadratic in the ratio. This finding shows that
(5.7) for Cu2+ and the corresponding null result for the model of Ni2+ are consistent, since
the latter model is valid only up to terms linear in the spin–orbit interaction.

Polarization in the diffracted beam can be calculated using formulae given by Lovesey
et al (1998).

6. Conclusions and discussion

On the basis of the atomic picture of 3d transition ions, the scattering length has been
calculated for a primary energy tuned to the K edge of an ion and an E2 (quadrupole)
absorption event. The scattering length is used to examine the amplitude of Bragg diffracted
x-rays, and the circular dichroic signal in the attenuation coefficient. A parallel study for
an E1 absorption event has been reported by Lovesey and Grimmer (1997).

The scattering length is determined by the orbital angular momentum of the valence
shell and, also, a trivial entry proportional to the number of holes in the shell. For K-shell
absorption and the level of approximation deployed in calculating the scattering length, no
information is available on the spin state of the valence shell. Set against this finding,
Hill et al (1997) ascribe the signal measured by diffraction from NiO to the spin moment
of the nickel ion. Formulae given here permit the scattering length to be calculated for
a ground-state wave function of an arbitrary degree of complexity. The easy axis of the
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resonant 3d transition ion can be at any orientation with respect to the frame of reference
established by the experiment.

In one example calculation, suitable for NiO, the orbital moment in the ground state is
created by the action of the spin–orbit interaction within the states of the crystal field. Using
a standard treatment, by perturbation theory, the amplitude factor is shown to be proportional
to the induced orbital moment(g−2)〈S〉, whereg is the principal gyromagnetic factor and
〈S〉 is the mean value of the spin (even at zero temperature〈S〉 < S due to zero-point
spin fluctuations in an antiferromagnet). The second example calculation does not treat the
spin–orbit interaction by perturbation theory, and thus one can explore the amplitude factor
as a function of the strength of the interaction. The symmetry is03, which is non-magnetic,
and for zero spin–orbit interaction the amplitude factor is also zero.

Both examples display selection rules for the polarization of the primary and secondary
beams, which might usefully be exploited in experiments. Different selection rules apply
depending on the orientation of the easy axis of magnetization relative to the plane of
scattering, and the formalism offered allows these to be derived for the general case.

Our theory applied to the ion 3d5 with L = 0 yields a null value for the E2 scattering
length, 〈f 〉. A value of 〈f 〉 for this ion different from zero is predicted if splitting of the
1s core state is allowed for. Referring to (2.1), one now has1 = 1(M̄) = M̄10 where10

is the size of the exchange interaction, the core-level magnetic quantum numberM̄ = ± 1
2

and the energy of the adsorption edge is chosen as the origin of the energy scale. Following
Loveseyet al (1998), the scattering length is found to be

〈f 〉 = −(eq)2
∑
M̄

{
E −1(M̄)+ i

2
γ

}−1∑
d

exp{ik · d−Wd(k)} 〈Z(d)〉η

and for the ion 3d5 the amplitude factor

〈Z(d)〉η = 1

20
8(ε′ · ε) cosθ

{
1+ 4

5
〈S〉M̄ cosβ

}
.

In this expression,ε andε′ are the polarization vectors of the primary and secondary beams,
respectively. In the cross-section for Bragg diffraction we use the expression

(ε′ · ε)2 = 1

2
(1+ cos2 θ + P3 sin2 θ)

where P3 is the component of the Stokes vector that measures the linear polarization
in the primary beam, and for pureσ -polarization, nearly realized with a synchrotron
source,P3 = 1. It is notable that〈f 〉 is zero in the channels of scattering in which
the primary polarization is rotated, and for pureσ -polarization it is proportional to cosθ
and thus decreases in size with increasing order of the Bragg reflection. For a collinear
antiferromagnet cosβ alternates in sign between ions in the unit cell, labelled byd, and
〈f 〉 is proportional to the spin magnetic moment and10. A calculation of10 for 3d5 by
van der Laan (1997) shows that it is very small, so10� γ . The attenuation coefficient is
proportional to the imaginary part of〈f 〉 evaluated withk = 0. The predicted attenuation
coefficient, being independent of the primary polarization, does not contain a dichroic signal,
unlike the diffraction cross-section.
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